I I TATAT TATA

Seat No.

H-003-2016001

B. Sc. (Sem. VI) (CBCS) (W.E.F. 2019) Examination April - 2023 Math - Paper - 08 (A) (Graph Theory & Complex Analysis - II) Faculty Code : 003

Subject Code : 2016001

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions : Figures to the right indicates full marks of the questions.

1	(a)	Answer the following questions :	4
		(1) Define: Degree of a vertex in a graph.	
		(2) The number of edges in K_0 is	
		(3) An undirected graph G has 8 edges. Find the number of vertices, if the degree of each vertex in G is 2.	
		(4) Define : Binary tree.	
	(b)	Attempt any one :	2
		 Prove that if a graph has exactly two vertices of odd degree, then there must be a path joining these two vertices. 	
		(2) Prove that number of vertices in a binary tree is always odd.	
	(c)	Attempt any one :	3
		(1) Prove that if n is odd, then the number of edge-disjoint	
		Hamiltonian cicuits in K_n is $\frac{n-1}{2}$.	
		(2) Prove that a graph is a tree if and only if it is minimally connected.	
	(d)	Attempt any one :	3
		(1) Prove that the number of edges in a tree with <i>n</i> vertices is $n - 1$.	
		(2) Prove that a graph G is Euler graph if and only if every vertex of G is of even degree.	

1

[Contd...

If G is a planar graph and G^* is dual of G, then rank (1)of G = of G^* . Define: Vertex connectivity of a graph. (2)(3) For a connected graph G with 5 vertices and 8 edges, what is the dimension of circuit subspace of a vector space associated with G? (4) What is the number of faces in a connected planar graph with 5 vertices and 7 edges? 2 (b) Attempt any one : Prove that chromatic number of any tree is 2. (1)(2) Define: Incidence matrix. Find incidence matrix of K_{4} . 3 (c) Attempt any **one** : (1)Prove that rank of incidence matrix of a graph with n vertices is n-1. (2)Prove that every circuit in a graph G has an even number of edges in common with any cut-set of G. 5 (d) Attempt any one : In usual notations, prove that $(W_G, +_2)$ is an abelian (1)group. (2)Find chromatic partitioning of the following graph. Answer the following questions : 4 (a) (1) Prove that $f(z) = e^z$ is conformal map at each point of Z plane. (2)Write a linear transformation that reflect expansion or contraction. (3) Define: Critical point.

Answer the following questions :

(4) What is general form of a bilinear transformation?

(b) Attempt any **one** :

- (1) Describe the transformation w = z + c, where c is any complex number.
- (2) Determine fixed points of the bilinear transformation z-1

$$w = \frac{z-1}{z+1}.$$

H-003-2016001]

3

2

(a)

[Contd...

2

4

- (c) Attempt any one :
 - (1) Show that the linear transformation $w = \frac{1}{z}$ maps a horizontal line $y = c_2(c_2 \neq 0)$ onto the circle

$$u^{2} + \left(v + \frac{1}{2c_{2}}\right)^{2} = \left(\frac{1}{2c_{2}}\right)^{2}$$

- (2) Under the transformation $w = z^2$, find the image of infinite strip $1 \le \operatorname{Re}(z) \le 2$.
- (d) Attempt any one :
 - (1) Show that the mapping $(w+1)^2 = \frac{4}{z}$ maps a unit circle in *w*-plane into a parabola in *z*-plane.
 - (2) Show that the linear transformation $z = \frac{i-w}{i+w}$ transforms upper half plane $v \ge 0$ in *w*-plane onto all points within and on unit circle in *z*-plane.

4 (a) Answer the following questions :

(1) Every convergent series is absolutely convergent. (True/ False)

(2) A series
$$\sum_{n=0}^{\infty} \frac{1}{1-z}$$
 is convergent for _____

- (3) Write Maclaurin's series of sinh z.
- (4) Define: Radius of convergence.
- (b) Attempt any **one** :

(1)
$$\sum z_n$$
 is convergent then prove that $\lim_{n \to \infty} z_n = 0$.

(2) Find the Maclaurin's series of $z \cos(z)$.

(1) Find Laurent's series expansion for the function

$$f(z) = \frac{1}{(z-1)(z-2)}$$
 in the region $1 < |z| < 2$.

(2) Expand $\cos z$ into a Taylor's series about the point

3

$$z_0 = \frac{\pi}{2}.$$

H-003-2016001]

[Contd...

5

4

2

3

(d) Attempt any one :

5

- (1) What is the largest circle within which the Maclaurian series for the function tanh *z* converges to tanh *z*? Write the first two nonzero terms of that series.
- (2) Derive Laurent's series of f(z) about point z_0 .

(a) Answer the following questions :
(a) Answer the following questions :
(b) The value of
$$\int_{C} e^{\frac{1}{z}} dz$$
 is ______.
(c) What is the residue of $\frac{\sin z}{z}$ at $z_0 = 0$?
(c) What is the residue of $\frac{\sin z}{z}$ at $z_0 = 0$?
(c) What is the residue of $\frac{1}{(z-2)^4}(z+3)^6$. Then $z = -3$ is the pole of order _____.
(d) Define : Isolated singular point.
(e) Attempt any one :
(f) Prove that $\int_{C} e^{\frac{1}{z^2}} dz = 0, C : |z| = 1$.
(g) Find residue of $\cot z$ at $z = \pi$.
(h) Discuss the types of isolated singularities with suitable examples.
(g) Evaluate $\int_{C} \frac{4-3z}{z(z-1)(z-2)} dz$, where C is the circle $|z| = \frac{3}{2}$.
(h) Attempt any one :
(c) Attempt any one :
(c) Attempt any one :
(c) Evaluate $\int_{C} \frac{2z+3}{z(z-1)} dz$; $C : |z| = 2$.
(c) Using Cauchy's residue theorem, show that
 $\int_{0}^{2\pi} \frac{1}{\cos \theta + 2} d\theta = \frac{2\pi}{\sqrt{3}}$.

H-003-2016001]

5